
v. 0.8

Tagsistant
All your �les, quickly and easily.

Docs Download Demo Forum Your account Search Donate Word of mouth Contacts

Tagsistant 0.8 howto

Last Updated on Sunday, 23 November 2014 11:45

0.8 is the new release of Tagsistant, a semantic �lesystem for Linux kernels. Release 0.8 is still under development and can be downloaded

from the SVN trunk (more information here).

A semantic �lesystem is a new kind of �lesystem for personal usage that organizes contents by tags.  Tagging our contents is a common

practice today. We use tags on-line for photos, bookmarks and much more. Social networks let tag near everything. Our media library is full of

tag (EXIF in JPEG, ID3 in mp3, ...) and html or other documents contain keywords which are basically tags.

Despite all this load of tags (metadata, keywords, call it as you prefer), the desktop is still an ancient kingdom ruled by directories. We are

forced to use directory hierarchies to store our contents and often we struggle to locate our �les. Many tools have been introduced to port the

concept of tags to the desktop, but all of them are applications which store tags inside a proprietary or somehow closed database that forces

you to use their interface to take advantage of tags. This has some consequences:

tags must be entered and deleted using that application interface1. 

tags must be used from that application interface when querying for contents2. 

contents (�les) must be modi�ed using that application interface (does not apply to �le managers only)3. 

no exchange with other tagging tools is permitted (two applications not necessary are able to share tags)4. 

tags can't be accessed by an external program or service (like a web service or an indexing tool)5. 

Tagsistant is an e�ort to solve all those problems by moving the tagging logic from the application layer to the storage layer.  If tags are

managed by the �lesystem, all the software you already use will be able to access and take advantage of tags: create tags, delete tags, tag �les,

retrieve �les!

The �rst  released Tagsistant  version was 0.2,  in  2007.  Back then Tagsistant  allowed the tagging of  �les  only.  Starting from release 0.6,

Tagsistant started to manage any kind of object, including devices, directories and so on. Some syntactic sugar has been added to accomplish

this, like the @/ directory at the end of the queries.

But release 0.8 adds a lot more. A deduplication layer reduces disk usage by deleting �le duplicates preserving tagging information. An internal

caching layer speeds up the execution of queries already resolved. Tags have been expanded and now support triple form, better known as

0.8 howto 0.7 howto 0.6 howto What's next? F.A.Q. Internals Hacking

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

1 of 21 11/23/2014 12:52 PM



machine tags. Frequently used queries can be bookmarked as aliases, saving some user time. Tags can be organized with relations to form a

simple kind of ontology. And Tagsistant does even more to make the user life easier, by automatically extracting tags on its own, using its

customizable autotagging plugins.

To start using Tagsistant, you need to mount it somewhere. In this tutorial we'll choose by convention the ~/my�les directory, but you can

change it as it pleases you:

$ tagsistant ~/myfiles

 Tagsistant (tagfs) v.0.8 Build: 20130323.000045 FUSE_USE_VERSION: 26

 (c) 2006-2013 Tx0

 For license informations, see ./tagsistant -h

 Using default repository /home/tx0/.tagsistant

 Using default plugin dir: /usr/local/lib/

By default Tagsistant saves all its managed informations (�les, tags, relations and tagging status) in a hidden directory named ~/.tagsistant. If

you use just one Tagsistant repository, just ignore this information. But if you plan to use more than one Tagsistant repository at the same time,

please remember to provide a separate one to each �lesystem, using the --repository argument, as in:

$ tagsistant --repository=~/.photo ~/myphoto

$ tagsistant --repository=~/.music ~/mymusic

The repository can also be passed as the �rst parameter without the --repository= pre�x. This allows you to mount Tagsistant from /etc/fstab

using the special tagsistant# pre�x before the repository path. This is an example line:

tagsistant#/home/tx0/.tagsistant /home/tx0/myfiles   fuse   noatime,user,uid=1000,gid=1000   0   0

You can of course set up as many entries you need in separate directories:

tagsistant#/home/tx0/.tagsistant-photos /home/tx0/photos   fuse   noatime,user,uid=1000,gid=1000   0   0

tagsistant#/home/tx0/.tagsistant-music  /home/tx0/music    fuse   noatime,user,uid=1000,gid=1000   0   0

tagsistant#/home/tx0/.tagsistant-docs   /home/tx0/docs     fuse   noatime,user,uid=1000,gid=1000   0   0

Add allow_other if you want the �lesystem to be accessed by other users (do this for exporting tagsistant to Windows via Samba). Add noauto

to avoid automounting at boot time. If mounted at boot time, Tagsistant will run as root and only root will be able to unmount it.

Another thing Tagsistant does by default is using SQLite. If you feel comfortable with SQLite or just don't know what does it mean, feel free to

skip the rest of this section. If instead you would prefer to use MySQL, change the command line as follows:

$ tagsistant --db=mysql:host:database:user:password ~/myfiles

Of course you must provide the database and the user inside MySQL before mounting Tagsistant.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

2 of 21 11/23/2014 12:52 PM



You can omit the tokens after mysql, accepting default values, but if you specify a token you must specify the tokens on its left too. So, if you just

write --db=mysql, you are using default values of localhost, tagsistant, tagsistant and tagsistant for the other tokens.

This schema gives you the �exibility to maintain just one standard tagsistant  user inside MySQL with password tagsistant,  but allowed to

access many tagsistant databases. To connect to DB photos or music, you'll just change the db name like in: --db=mysql:localhost:photos or

--db=mysql:localhost:music.

Now Tagsistant is managing the ~/my�les directory. If you list its contents you'll �nd something similar to:

$ ls -l ~/myfiles

total 1.6M

drwxr-xr-x 2 tx0 tx0 400K Mar 23 16:40 alias

drwxr-xr-x 2 tx0 tx0 400K Mar 23 16:40 archive

drwxr-xr-x 2 tx0 tx0 400K Mar 23 16:40 relations

drwxr-xr-x 2 tx0 tx0 400K Mar 23 16:40 stats

drwxr-xr-x 2 tx0 tx0 400K Mar 23 16:40 store

drwxr-xr-x 2 tx0 tx0 400K Mar 23 16:40 tags

The main  directories  archive/,  alias/, store/, relations/,  stats/  and tags/  are  the  interface  you'll  use  to  interact  with  Tagsistant.  It's  very

important that you understand the meaning Tagsistant gives to each of them, since it's di�erent and can be unexpected compared to the

experience you have with traditional �lesystem.

To  skim  over  the  role  of  each  directory,  we'll  brie�y  describe  each  of  them  in  a  rational  order.  The  tags/  directory  is  devoted  to  tag

management. Inside it you can create, rename and delete tags. This can also be done in the store/ directory, but be warned that deleting a tag

here can wipe out your repository. Do it in tags/ instead. Use store/ to tag your �les, to perform queries and to access your contents from your

favorite application (media player, text editor, drawing app, ... whatever!). When a �le is created under store/ it appears inside archive/ too.

Here you can edit it,  but you can't delete it, or create other �les. You can even access all your �les in one single directory. The relations/

directory contains the relations between your tags to organize your knowledge. In alias/ you can save your most used queries while in stats/

you can get information about Tagsistant internal state or how it was started. Use the chart below to summarize the role of each one.

Directory Manage tags Manage �les Manage relations Manage bookmarks Stats&conf

alias/ ✓

archive/ ✓ [1]

relations/ ✓

stats/ ✓

store/ ✓ [2] ✓

tags/ ✓

Notes:

Files can be edited, but can't be created or deleted. Use store/ instead.1. 

Deleting tags can wipe out your whole repository! Use tags/ instead.2. 

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

3 of 21 11/23/2014 12:52 PM



There are two places where you can create tags: the store/ directory and the tags/ directory.

The tags/ directory is the recommended place to manage your tags. You can create them, rename them and delete them too. But the tags/

directory does not allow you to tag your �les. This role is assigned to the store/ directory. There you can create and delete tags too, but you can

also tag �les by copying them inside one or more tags, but is not advisable to use the store/ directory do delete tags. We'll return on this and

on the tags/ directory later. So far just assume you'll be using the store/ directory only.

In respect to an ordinary directory, the store/ directory is something completely new. Be prepared to learn something before using it. Inside

store/ the assumption that two directories can't be parent of the other at the same time falls. But let's start from the most simple operation:

creating a tag. Remember that in Tagsistant a tag is just a directory created right under the store/ or tags/ directories. Knowing this, all we have

to do is to use mkdir:

$ mkdir ~/myfiles/store/video/

$ mkdir ~/myfiles/store/scifi/

$ mkdir ~/myfiles/store/startrek

What we have done here can be translated in English as: create a tag called video, a tag called sci�, and a tag called startrek.

To understand the binding between store/ and tags/, list the contents of tags/ and you'll �nd the tags you've just created under store/:

$ ls ~/myfiles/tags/

video scifi startrek

Now we leave the store/ directory to take a quick tour of another one, strictly related: the relations/ directory. This one is used (guess what?) to

manage relations between tags. Relations keep clean and e�ective your knowledge about tags and reduce the number of times you have to tag

�les, like a virtual tagging mechanism. Let's see how.

Tagsistant is a semantic �lesystem. The adjective semantic refers to the meaning of tags which inherently establishes relations between them.

For example, a relation of inclusion inherently exists between the concept of music  and the concepts of rock and jazz. Another example is

represented by the tags we created previously: sci� and startrek. Those tags obviously are related because Star Trek is a sci-� TV show.

Tagsistant provides a way to describe such relations in a way that can be computationally used. In Tagsistant any relation always involves two

tags and can be of two types:

left-tag is equivalent to right-tag (use 'is_equivalent')1. 

left-tag includes right-tag (use 'includes')2. 

For example, you can tell Tagsistant that sci�/ includes startrek/ by using mkdir under relations/:

$ mkdir ~/myfiles/relations/scifi/includes/startrek/

That's it. Now all the �les tagged as startrek are inherently tagged as sci� too. The concept of inherently tagged means that a �le tagged as

startrek will act as if it was tagged as sci� too, even if the �les is not, and it will act like this as long as the relation between the tags sci� and

startrek is established.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

4 of 21 11/23/2014 12:52 PM



The left tag (sci� in our example) must already exist, but Tagsistant can create the right tag for you, like in:

$ mkdir ~/myfiles/relations/scifi/includes/starwars/

The starwars tag did not exist yet, but if you list tags/, you'll �nd the starwars tag too:

$ ls ~/myfiles/tags/

scifi  startrek  starwars  video

You noticed it? This is a small violation of what we have said before: tags can be created inside store/ and tags/ only. The auto-creation of the

right tag under relations/ is just an aid to speed up your experience. For clearness, keep assumed that you can create tags inside store/ or tags/

only.

Let's wrap up what we have seen so far. We have created some tags (video, sci�, startrek and lastly starwars) and we have established two

relations: sci� includes startrek and sci� includes starwars. Now we are ready to tag our �les.

Tagging a �le happens when we copy that �le under the store/ directory. The path we copy the �le in tells which tags are applied to the �le.

More than one tag can be applied to a �le at the same time and the same �le can be tagged twice or more.

As a �rst test, we use the movie "First Contact" and tag it as startrek by copying it inside the proper tag. The command is:

$ cp first_contact.avi ~/myfiles/store/startrek/@/

Split the path in its logical components to understand what is happening. We have:

~/my�les: this is the mountpoint1. 

store/: this clearly says we are tagging something2. 

startrek/: this is the list (a one element list) of tags we are applying to the �le. This is also called the query part.3. 

@/: a conventional marker to end the query4. 

Now let's check our �le is where we put it:

$ ls ~/myfiles/store/startrek/@/

first_contact.avi

The @/ element is always used at the end of the tag list (the query) when we are asking Tagsistant to locate a �le or to tag a �le. Without the @/

mark, Tagsistant will  assume that we are still  building the query.  A query without a @/ mark is called an incomplete query  and can't be

processed for looking up �les.

This is a schema of the query:

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

5 of 21 11/23/2014 12:52 PM



To make a little more meaningful the role of @/, we'll now use the �le we have just tagged with a media player:

$ mplayer ~/myfiles/store/startrek/@/first_contact.avi

Try to imagine how the path would look without the @/ mark. How could Tagsistant know that �rst_contact.avi is a �lename and not another

tag? It just can't. That's why a query must be completed by @/ to locate a �le.

In the next example we use more than one tag:

$ cp the_wrath_of_khan.avi ~/myfiles/store/startrek/video/@

Translated in English this sounds like tag the movie "The Wrath of Khan" as both 'startrek' and 'video'. In this query the parts of our list are:

~/my�les: this is the mountpoint1. 

store/: this clearly says we are tagging something2. 

startrek/video/: two tags are being applied to the same �le at once3. 

@/: a conventional marker to end the query4. 

And this is the query schema:

You  will  now  �nd  the  �le  "the_wrath_of_khan.avi"  inside  store/video/@/,  store/startrek/@/,  store/video/startrek/@/  and  store/startrek

/video/@/. The last two queries are totally equivalent. But wait! We taught Tagsistant that sci�/ includes startrek/, so we expect to see that �le

in store/sci�/@/ too:

$ ls ~/myfiles/store/scifi/@/

first_contact.avi the_wrath_of_khan.avi

Yes, both startrek movies are there! That's because Tagsistant has an internal reasoner which uses the relations you provide to include �les not

directly tagged (remember? this is what we called inherent tagging). Now let's tag something else:

$ cp the_empire_strikes_back.avi ~/myfiles/store/starwars/@/

$ ls ~/myfiles/store/scifi/@/

first_contact.avi  the_wrath_of_khan.avi  the_empire_strikes_back.avi

No �les are directly tagged as sci�/ but since that tag includes both startrek/ and starwars/ now it features three �les. The real bene�ts of using

relations are:

reducing the length of your queries1. 

avoid re-tagging and over-tagging your �les2. 

Both save your time.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

6 of 21 11/23/2014 12:52 PM



Another way to get the same set of results from the previous query would be searching all the �les tagged startrek/ and all the �les tagged

starwars/, with this query:

$ ls ~/myfiles/store/startrek/+/starwars/@/

first_contact.avi  the_wrath_of_khan.avi  the_empire_strikes_back.avi

As you can see, the query sci�/@/ is much shorter than the query startrek/+/starwars/@/ but that's not the point.

The new mysterious mark +/ we've just introduced in the middle of the path is a way to build complex queries. It splits the query in two or more

parts and processes them as separate queries. Then it merges the results of both queries to form one single superset of results to be returned

to the user. To understand a query featuring one or more +/, �rst split the query by +/. You'll get two or more traditional sub-queries. Tagsistant

will perform each sub-query separately and then it will merge the results just before returning them to you.

Translated to English, the previous query sounds like: get the results of the query store/startrek/@/ then merge them with the results of the

query store/starwars/@/ and give me back what you've found.

This is totally di�erent from writing two tags one next to the other, without a +/ in between. In that case you would be looking for �les that are

tagged by both tags, like in:

$ ls ~/myfiles/store/startrek/starwars/@/

which ends in no results (well, this could be no longer true since J.J. Abrams has got in charge of... but I'm straying from the topic).

So, you may be wondering: if I want to lookup all the videos and pictures of startrek from my collection, may I accomplish this with:

$ ls ~/myfiles/store/startrek/picture/+/startrek/video/@/

Yes, that's perfectly �ne! A little bit long to write, but �ne. And what about the teleport or red alert sounds you've saved as .wav �les from the

nineties? Just add them!

$ ls ~/myfiles/store/startrek/picture/+/startrek/video/+/startrek/sound/@/

OK, that's de�nitely uncomfortable, I agree. But I've an alternative for you: a tag group! Tag groups are tag sets where one tag is enough to have

a match. Your previous query is looking for all the �les tagged as startrek/ and picture/ or video/ or sound/. The startrek/ tag is required, but

any one of the other three tags would be enough. To exploit the compactness of tag groups, just include the last three tags between curly

braces, like this:

$ ls ~/myfiles/store/startrek/{/picture/video/sound/}/@

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

7 of 21 11/23/2014 12:52 PM



Much shorter and more readable, isn't it? Tag groups can even be combined. Let's suppose you just want �les related to Deep Space 9 or

Voyager. Then you could query Tagsistant like this:

$ ls ~/myfiles/store/{/DeepSpace9/Voyager/}/{/picture/video/sound/}/@

How compact  and quick!  We've declared two tag groups,  one of  two tags and another  one of  three,  saving us from writing six  (2  x  3)

sub-queries joined by the +/ sign.

The only thing you can't do with tag groups is nest them. What would it mean anyway a tag group inside another one? Of course you are

requested to close tag groups before completing the query. The result of ~/my�les/store/{/startrek/@/ is left unde�ned.

Tagging is a day by day process. Today you tag some movie with a tag, tomorrow I'll want to add another one. How can be done this in

Tagsistant?

There are two ways to add more tags to an object. The �rst one is to copy the same object in the new tag:

$ cp somefile.txt ~/myfiles/store/tag1/@

[ ... some days later ... ]

$ cp somefile.txt ~/myfiles/store/tag2/@

Tagsistant is smart enough to understand that you've copied the same �le twice (see Deduplication later) so it keeps just one copy of the �le

with both tags tag1/ and tag2/.

This is however suboptimal, because you're forced to wait for the copy process to complete twice, very annoying especially for big �les like

movies. Moreover, deduplicating the �les takes time too, because it has to scan the whole �le to compute it checksum. A better way would be

the mv command:

$ cp somefile.txt ~/myfiles/store/tag1/@

[ ... some days later ... ]

$ mv ~/myfiles/store/tag1/@/somfile.txt ~/myfiles/store/tag1/tag2/@

The mv command gets internally translated into a rename() call which Tagsistant manages very e�iciently. rename() basically removes from

some�le.txt all the tags listed in the source query (the left one) and then adds all the tags contained in the destination query (the right one). So

what's basically happening is:

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

8 of 21 11/23/2014 12:52 PM



the tag tag1/ from the source query is removed1. 

the tag tag1/ from the destination query is added2. 

the tag tag2/ from the destination query is added3. 

Point 1 and 2 produce a neutral e�ect, so the only result of this command is to add query tag2/ to some�le.txt. Just remember to add to the

destination query the same tags you include in the source query, otherwise some tagging will be lost. To avoid unintentionally removing some

tags, use the ALL/ special tag in the source query:

$ mv ~/myfiles/store/ALL/@/somefile.txt ~/myfiles/store/tag2/@

See later for more information on the ALL/ special tag.

Another frequent operation is merging two tags, because you �nd that one tag is a duplicate of another or any other reason. Mergin two tags is

very simple with Tagsistant, it's just a matter of moving all the content of a tag (the merged) into another (the destination) and then delete the

merged one:

$ mv store/merged_tag/@/* store/destination_tag/@/

$ rmdir tags/merged_tag

The use of @@/ in place of @/ may help in understanding and checking what's going on. @@/ disables the reasoner, as you'll read soon, and

gives you a clearer view of what's tagged how in the end.

So far we have seen �les being tagged by Tagsistant. But �les are not the only object type Tagsistant can manage. In fact Tagsistant can tag any

kind of object: directories, named pipes, devices and symbolic links. To create them you can use traditional Linux commands (mkdir, mk�fo,

mknod, ln) with a complete query like in:

$ mkdir ~/myfiles/store/startrek/@@/subtitles/

$ ln -s ~/Videos/encounter_at_farpoint.avi ~/myfiles/store/startrek/video/@/

Here we have a directory named subtitles tagged as startrek/ and a link to a video tagged as startrek/ and video/ too. Symbolic links are very

useful to tag a huge amount of �les or big sized �les in a matter of seconds. Let's focus on the video encounter_at_farpoint.avi. It's a big �le

(about 600 megabytes). Using the copy way you tag it as startrek/. Some days after you want to add the video/ tag, so you copy it again:

$ cp ~/myfiles/store/startrek/@/encounter_at_farpoint.avi ~/myfiles/store/video/@

Here you have to wait for all the 600 megabytes to be copied in the new directory and then deduplicated,  which costs to Tagsistant the

computation of the SHA1 checksum of the �le (in other words a long and useless task). If however you would have used symlinks the operation

would have taken the fraction of a second:

$ ln -s ~/myfiles/startrek/@/encounter_at_farpoint ~/myfiles/store/startrek/@

$ ln -s ~/myfiles/startrek/@/encounter_at_farpoint ~/myfiles/store/video/@

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

9 of 21 11/23/2014 12:52 PM



Tagsistant deduplicates symlinks by comparing their pointer object, which is an instantaneous operation. This approach has another advantage:

you don't put your original �les inside Tagsistant. Don't misunderstand me: Tagsistant is a safe place for your �les. But if you put your �les

inside it then you have to use it to access them. This way you can keep accessing your �les in the traditional way and in the tag way at the same

time!

Let's do a small wrap up of the main concepts seen so far. Each directory under store/ or tags/ is a tag. If you copy a �le under the store/

directory it gets tagged. You can establish relations between tags using the relations/ directory. If a tag A includes the tag B all the �les tagged

as B will show up in store/A/@/ as well.

So far, so good. Now imagine that you tagged your mp3 library by band name and then organized the band tags by genre. In the end you

included all the genre tags in music. Something like:

$ cp the_number_of_the_beast.mp3 ~/myfiles/store/iron_maiden/@

[... other files too ...]

$ mkdir ~/myfiles/relations/heavy_metal/includes/iron_maiden/

[... other bands too ...]

$ mkdir ~/myfiles/relations/music/includes/heavy_metal/

$ mkdir ~/myfiles/relations/music/includes/jazz/

$ mkdir ~/myfiles/relations/music/includes/classical/

$ mkdir ~/myfiles/relations/music/includes/piano/

[... other genres too ...]

$ ls ~/myfiles/store/music/@

[... your whole library here ...]

Amazing!  All  your  �les  in  one place,  without  having to  tag them as music  one by one.  Now you can for  example open ~/my�les/store

/heavy_metal/@/ with your favorite audio player to listen to all your heavy metal collection, excluding those �ne jazz sessions or Bach's fugues.

You start the application, click on the_number_of_the_beast.mp3 and...  the smooth timbre of a piano spreads in the room. What the hell

happened to distorted guitars?

Oh, sure, now you remember: that version of The Number of the Beast is a nice tribute cover by a classical piano player. Better move it to

~/my�les/store/classical/piano/@:

$ mv ~/myfiles/store/music/@/the_number_of_the_beast.mp3 ~/myfiles/store/classical/piano/@

You give the move command and... the �le is still there?!?!

Of course it is, because the reasoner knows that the music tag includes both classical and piano tags too, so your �le still features in the results

of store/music/@. But how could you know that moving (re-tagging) the �le happened? The reasoner prevents you from being sure.

The answer is: ask the reasoner to not step in!

If you end a query with the special @@/ marker, the reasoner doesn't get involved, so only the �les with an explicit tagging are returned. In

example, if you list store/music/@@/, no �les are listed, because music is by itself totally empty (no �le has been tagged as music). The very

same happens if you list store/heavy_metal/@@/. But if you list store/iron_maiden/@@/, all your Iron Maiden songs are there.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

10 of 21 11/23/2014 12:52 PM



The @@/ marker is usually applied to single tag queries, like store/iron_maiden/@@/ to ease the re-tagging process.

I'm sure you'll agree with me that Iron Maiden are a cult band that composed and performed immortal songs, but maybe you don't like all of

their periods. Let's say you would like to exclude the albums from the Bayley's period. How could your do it?

Provided that you tagged those songs with a "bayley" tag, you can use the -/ operator to exclude those songs from the results:

$ ls ~/myfiles/store/iron_maiden/-/bayley/@/

Think to the -/ operator like a �lter. First all the songs tagged iron_maiden/ are selected and then all the songs tagged bayley/ are discarded

from that selection.

The -/ operator applies only to the tag that follows it, so if you want to exclude another singer, you can do it with:

$ ls ~/myfiles/store/iron_maiden/-/bayley/-/dianno/@/

But pay attention: you have one more singer left. I've warned you.

When you write a query you can of course make some mistakes. For example you could start a query with the negation operator -/ or open a

tag group inside another tag group. Tagsistant will refuse to process a malformed query and will inform you about the error. This happens by

listing only one �le as result, called error which contains a description of your error:

$ ls ~/myfiles/store/{/{/t1/@@

error

$ cat  ~/myfiles/store/{/{/t1/@@/error

Syntax error: nested tag group. Close all tag groups before opening another.

This works only in the store/ directory because it's the only one that's supposed to return a �le set, but it's also the one where the biggest part

of your errors will happen.

Now you perfectly know how to tag �les and retrieve them by complex queries. What you may ask now is: how do I know what tags have been

applied to a �le?

This is somehow the complementary question to: what �les are tagged as X and Y? The query syntax allows you to answer to this kind of

questions, but does not answer to the �rst one. Hence Tagsistant provides you with a feature called tag su�ix which is a string you can append

to any object in a complete query to automagically create a �le containing all the tags applied to that object. The default tags su�ix is ".tags",

but you can change it from the command line if you think this will con�ict with your �les. Let's see how it works:

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

11 of 21 11/23/2014 12:52 PM



$ cp ~/somefile.txt ~/myfiles/store/t1/t2/@@/

[ ... some time later ... ]

$ cp ~/somefile.txt ~/myfiles/store/t6/t7/@@/

[ ... some days later ... ]

$ cat ~/myfiles/store/t6/@@/somefile.txt.tags

t1

t2

t6

t7

document:type=text

This feature works for �les, directories, symlinks and any other kind of object supported by Tagsistant. Tags su�ixed �les do not get listed in

normal queries to avoid hogging up your results, but you know you can make them appear whenever you need them.

You may wonder how Tagsistant refers to the �les it is managing. Well, whether you care or not, knowing how this happens is something very

useful. Behind the scenes Tagsistant assigns to each �le a unique number, called a Tagsistant inode. The word inode comes from the �lesystem

lingo and is used by Tagsistant in a rather liberal way. You can just think to it as an ID or a serial number, if this sounds more familiar. Just

remember that each �le has its own.

Now let's take a look inside the archive/ directory:

$ ls ~/myfiles/archive/

0 1 2 3 4 5 6 7 8 9

The archive/ directory is where your �les are kept. Starting from release 0.8, Tagsistant organizes them in a hierarchy of subdirectories, placing

each �le in a speci�c directory chosen by reverting its inode and taking the �rst digits (by default the �rst three, but that can be con�gured). Let's

see an example: a �le with inode 1923 will be placed in archive/3/2/9/, because 3291 is the reverse of 1923 and only the �rst three digits are

considered. In our examples we have a small amount of �les and the situation is something like:

archive/1/1___first_contact.avi

archive/2/2___the_wrath_of_khan.avi

archive/3/3___the_empire_strikes_back.avi

When inodes are shorter than three digits, the hierarchy ends before. Here "�rst_contact.avi" has inode 1, "the_wrath_of_khan.avi" has inode 2

and so on.

You may be wondering why this is something you should know. In fact usually you don't care about inodes since you can see them just inside

the archive/ directory, which you are not supposing to visit very often, being the big part of the game played inside store/ and tags/. This is

correct, but with one important exception.

If two di�erent  �les (this means two �les with di�erent contents), copied inside two or more di�erent tags, have the same name (such as

avatar.jpg), Tagsistant will apply the inode in front of them when it have to list both as the result of a search operation, like in:

$ cp ~/myblog/avatar.jpg ~/myfiles/store/blog/@

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

12 of 21 11/23/2014 12:52 PM



$ cp ~/movies/covers/avatar.jpg ~/myfiles/store/pictures/@

$ ls ~/myfiles/store/blog/+/pictures/@

... 231___avatar.jpg ... 862___avatar.jpg ...

This is the only way Tagsistant could let you distinguish two di�erent  �les with the same  name when both are returned by a query. If no

�lename overlaps, Tagsistant will avoid putting the inode:

$ ls ~/myfiles/store/blog/@

... avatar.jpg ...

$ ls ~/myfiles/store/pictures/@

... avatar.jpg ...

The two avatar.jpg �les are not the same, but since there's no ambiguity, there's no need to show their inode.

After some time spent adding tags to your repository, you'll soon notice that the store/ and tags/ directories will get �lled by a long �at list of

tags which is di�icult to manage. Simple tags are quick to write but will often collide (the same tag has di�erent meanings in di�erent contexts)

or will loose their intuitiveness. How would you represent the year 2000? With the number 2000? As 'year_2000'? The second one is better, but

implies the creation of a 'year_2001'  tag and 'year_1999' tag too. Numbers are in�nite,  I  don't need to explain why this is not the proper

approach.

Tagsistant o�ers a second form of tags called machine tags, sometimes called also triple tags (because of their form) which better organize

your tags in a more structured and clearer way. A machine tag is composed by three elements:

a namespace1. 

a key2. 

a value3. 

The namespace describes the semantic context the tag belongs to. In the example of the year 2000, the context clearly is the measurement of

time, so we could choose time as namespace. The choice of the namespace is up to you and you can use the one that better suites your taste.

The key describes which aspect of the semantic context the tag refers to. In this case the number 2000 is a year, so our key will undoubtedly be

year.

The value is of course 2000 and I don't think I need to add anything else.

There is a fourth element which is a comparison operator, meaningful when the tag is included in a search query, which goes between the key

and the value. This operator can be one from:

eq (equals to)1. 

inc (includes)2. 

gt (greater than)3. 

lt (less than)4. 

Knowing this, the complete syntax of a machine tag becomes:

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

13 of 21 11/23/2014 12:52 PM



namespace:/key/operator/value/

Please note the colon at the end of the namespace. This tells tagsistant that the �rst element starts a machine tag and must not be interpreted

as a simple tag. For example a tag representing the year 2000 could be written as:

time:/year/eq/2000/

Now you know how to properly tag your last summer photos:

$ cp ~/summer_photos/*.jpeg ~/myfiles/store/time:/year/eq/2000/time:/month/eq/August/@@/

If you're thinking that tagging by date your photos this way is extremely boring, feel relieved: I agree. Tagsistant will do that for you with

another feature: the autotagging plugins. You will not be forced to add yourself dates (or other numeric informations) to �les that already

contain them, like JPEG �les do in their EXIF section. A dedicated plugin will scan your �les looking for metadata in the very moment you copy

your �les under store/. More on this later.

Machine tags and simple tags can be mixed in any way you like:

$ mkdir -p ~/myfiles/store/time:/year/eq/1981/

$ mkdir -p ~/myfiles/store/iron_maiden/

$ mkdir -p ~/myfiles/store/music:/album/eq/killers/

$ cp ~/music/iron_maiden/killers/*.mp3 ~/myfiles/store/iron_maiden/time:/year/eq/1981/music:/album/eq/killers/@@/

Here we tag (copy) all the MP3 �les from Iron Maiden' Killers album as 'iron_maiden', 'music:/album/eq/killers/' and 'time:/year/eq/1981/' at the

same time.

Now you may ask: what happens if I put twice the same �le in two separate folders? Will Tagsistant create two copies of the same �le or what?

The answer is: as soon as Tagsistant notices that two �les with the same content have been created, it deletes the second copy applying its tags

to the �rst one. So if you do this:

$ mkdir ~/myfiles/store/movies/

$ mkdir ~/myfiles/store/startrek/

$ cp first_contact.avi ~/myfiles/store/movies/@/

$ cp first_contact.avi ~/myfiles/store/startrek/@/

right after the end of the second copy Tagsistant will compare the content of the two �les �rst_contact.avi, guess the second is a duplicate of

the �rst, delete the second and tag the �rst also as startrek/. So you can now:

$ ls ~/myfiles/store/startrek/movies/@/

first_contact.avi the_wrath_of_khan.avi

Deduplication can currently be a bit rough and confusing for the user. If two identical �les named A.jpg and B.jpg get copied in two directories

called tag1/ and tag2/, Tagsistant will delete B.jpg and tag A.jpg as tag2/ too.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

14 of 21 11/23/2014 12:52 PM



$ cp A.jpg ~/myfiles/store/tag1/@/

$ cp B.jpg ~/myfiles/store/tag2/@/

[... deduplication happens here ...]

$ ls ~/myfiles/store/tag2/@/

... A.jpg ...

The content of B.jpg (being identical to A.jpg) is actually available under tag2/ too, but as A.jpg! The �le ~/my�les/store/tag2/@/B.jpg seems to

have vanished. This is something Tagsistant will address in a future release.

Tagsistant features a stack of autotagging plugins based on libextractor. Thanks to its ability to extract metadata from a long list of �le

formats, Tagsistant is able to integrate the user tagging with some automatically provided information. Autotagging plugins are located in the

src/plugins/ directory. Each plugin basically declares the mime-type it supports and sets a regular expression acting as a �lter: if a key extracted

by libextractor does not match it, that value is discarded and no tag is created. For example, a basic regular expression for the JPEG format

could be "^(size|orientation)$" (which is actually the default one). The user can declare its preferred regular expressions in the repository.ini �le,

like in:

[mime:text/html]

filter=^(author|date|language)$

[mime:image/jpeg]

filter=^(size|orientation)$

[mime:application/ogg]

filter=^(year|album|artist)$

Version 0.5, 0.6 and 1.x of libextractor are supported. The list of plugins available so far includes:

application/xml1. 

image/gif2. 

text/html3. 

image/jpeg4. 

image/png5. 

application/ogg6. 

audio/mpeg7. 

Information on writing plugin is provided here.

If you list the contents of the store/ directory you'll notice a tag named ALL/ you have not created:

$ ls ~/myfiles/store/

-  @  @@  +  ALL  startrek  starwars  scifi

The ALL/ tag is a special automatic tag which includes all the �les managed by Tagsistant. When you list store/ALL/@@ or store/tag1/+/ALL/@

or any other combination you get the same results: all your �les.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

15 of 21 11/23/2014 12:52 PM



This tag may seem somehow useless: what's the need of a tag that lists all my �les? You may think: I want to narrow the list of my �les by tags,

not list them all, otherwise I would not be using a tool like Tagsistant. OK, then answer to this question: how do you apply an action to all your

�les, knowing that a recursive scan of the store/ directory is impossible since it would travel all the in�nite permutations of all your tags? The

answer is: using the ALL/ tag.

$ grep "John Doe" ~/myfiles/store/ALL/@@/*.txt

A common operation is rescanning all your �les for new tags when you add a new autotagging plugin:

$ touch ~/myfiles/store/ALL/@@/*

This will force a new scan and by the way redoes deduplication too.

The ALL/ tag is also useful to retag your �les. For example to add the tag picture/ to a �le named "IMG_09394.jpg" you �rst need to locate it

somewhere. Let's say it's tagged holiday/, so:

$ ls ~/myfiles/store/holiday/@/

[ ... ]

IMG_09394.jpg # here you've found the file

[ ... ]

$ mv ~/myfiles/store/holiday/@/IMG_09394.jpg ~/myfiles/store/picture/@ # holiday/ tag disappeared!

You've moved "IMG_09394.jpg" inside picture/, but you've forgot to add holiday/ back in the destination query, mistakenly removing that tag

from the �le! A much better way is to access the �le from the ALL/ tag and "move" it from there:

$ ls ~/myfiles/store/ALL/@/IMG_09394.jpg

IMG_09394.jpg

$ mv ~/myfiles/store/ALL/@/IMG_09394.jpg ~/myfiles/store/picture/@

The �le got its new picture/ tag without the risk of removing any tag by mistake, since ALL/ is a virtual tag and can't be removed.

If you use a query very often, you may �nd annoying to enter it every time. Tagsistant o�ers the alias/ directory as a bookmark store to save

your favorite queries. The alias/ directory contains �les holding a query each. For example you could save an alias named maiden_videos like

iron_maiden/�le:/format/eq/AVI/  and  another  one  named  summer_2000  like  �le:/format/eq/jpeg/time:/year/eq/2000/time:/month

/eq/August/.

We should more properly talk of fragments of queries, because each alias can be combined with other aliases or extended by more tags when

used inside a query. Let's see how.

If you list the content of the store/ directory, you'll see your aliases listed with regular tags but with an equal sign before them:

$ ls ~/myfiles/stores/

... =maiden_videos ... =summer_2000 ...

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

16 of 21 11/23/2014 12:52 PM



You can include your aliases in your regular queries:

$ ls ~/myfiles/store/=maiden_videos/@/

even combining them with regular tags:

$ ls ~/myfiles/store/=maiden_videos/time:/year/lt/1985/@/

The last one will be expanded before being processed as:

$ ls ~/myfiles/store/iron_maiden/file:/format/eq/AVI/time:/year/lt/1986/@/

(Long Beach Arena, we are coming!)

Ahem...  Please use aliases  with  caution.  They are  actually  replaced literally  by  their  query  fragment  and this  could hide some surprises,

especially if the fragment contains the +/ operator. If the maiden_videos alias have contained:

iron_maiden/file:/format/eq/AVI/+/iron_maiden/file:/format/eq/MPEG

the query:

$ ls ~/myfiles/store/=maiden_videos/time:/year/lt/1986/@/

would have been translated into:

$ ls ~/myfiles/store/iron_maiden/file:/format/eq/AVI/+/iron_maiden/file:/format/eq/MPEG/time:/year/lt/1986/@/

The time:/year/lt/1986/ tag would have been added to the second part of the query only! The Iron Maiden AVI �les would have been returned

even if �lmed after the year 1986 while MPEG �les would have been limited to that year!

Untagging a �le or another object is as simple as deleting it. Don't worry: an object is actually deleted from Tagsistant only when it's removed

from its last tag. As an example consider this situation:

$ cp /some/file.txt ~/myfiles/store/docs/texts/@/

$ rm ~/myfiles/store/docs/@/file.txt

Here �le.txt has been untagged from docs but it's still recorded in the database and tagged as texts.

Deleting a tag is something very simple to do from the command line. A tag can be deleted using rmdir from the store/ or the tags/ directory:

$ rmdir ~/myfiles/store/useless_tag/

$ rmdir ~/myfiles/tags/another_useless_tag/

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

17 of 21 11/23/2014 12:52 PM



That's all!

However when using a �lemanager you are forced to delete the tag from the tags/ directory. This is mainly the reason why the tags/ directory

exists. Under store/ each tag contains all the other tags and operators to let you build your query path:

$ ls -l ~/myfiles/store/jazz/ 

total 1.7M

dr-xr-xr-x 1 tx0 tx0 140K Dec 19 00:14 -

drwxr-xr-x 4 tx0 tx0 140K Dec 19 00:14 @

drwxr-xr-x 4 tx0 tx0 140K Dec 19 00:14 @@

dr-xr-xr-x 1 tx0 tx0 140K Dec 19 00:14 +

drwxr-xr-x 4 tx0 tx0 140K Dec 19 00:14 =maiden_videos

drwxr-xr-x 4 tx0 tx0 140K Dec 19 00:14 iron_maiden

drwxr-xr-x 4 tx0 tx0 140K Dec 19 00:14 music

drwxr-xr-x 4 tx0 tx0 140K Dec 19 00:14 file:

drwxr-xr-x 4 tx0 tx0 140K Dec 19 00:14 time:

A �le manager would probably refuse to delete a non empty directory or would ask the user to delete it RECURSIVELY! Of course this would

WIPE OUT YOUR WHOLE REPOSITORY. Please pay a lot of attention when deleting something from the store/ directory and NEVER DELETE A

store/ INCOMPLETE PATH. A path is incomplete when it does not include a @/ or @@/ mark.

To let you safely manage your tags without risking your entire repository, use the tags/ directory. Under the tags/  directory, tags have no

contents. If you delete a tag from the tags/ directory you just delete that tag and nothing more, without a�ecting the rest of the repository.

The stats/ directory contains some special read-only �les useful to get an idea of how Tagsistant is working. Let's see its content:

$ ls ~/myfiles/stats/

configuration  connections  objects  relations  tags

The con�guration �le contains the whole con�guration Tagsistant is using, both compiled and runtime chosen:

$ cat ~/myfiles/stats/configuration 

 --> Command line options:

         mountpoint: /home/tx0/myfiles

    repository path: /home/tx0/.tagsistant

   database options: mysql

  run in foreground: 0

    single threaded: 0

    mount read-only: 0

              debug: -

                     [ ] boot

                     [ ] cache

                     [ ] file tree (readdir)

                     [ ] FUSE operations (open, read, write, symlink, ...)

                     [ ] low level

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

18 of 21 11/23/2014 12:52 PM



                     [ ] plugin

                     [ ] query parsing

                     [ ] reasoning

                     [ ] SQL queries

                     [ ] deduplication

 --> Compile flags:

  TAGSISTANT_ENABLE_QUERYTREE_CACHE: 0

     TAGSISTANT_ENABLE_TAG_ID_CACHE: 1

    TAGSISTANT_ENABLE_AND_SET_CACHE: 1

   TAGSISTANT_ENABLE_REASONER_CACHE: 1

 TAGSISTANT_RETAG_INTERNAL_SYMLINKS: 0

         TAGSISTANT_VERBOSE_LOGGING: 0

         TAGSISTANT_QUERY_DELIMITER: @

        TAGSISTANT_ANDSET_DELIMITER: +

         TAGSISTANT_INODE_DELIMITER: '___'

The objects, tags and relations �les contain the total number of entities in the database:

$ cat ~/myfiles/stats/objects 

# of objects: 1744

$ cat ~/myfiles/stats/tags

# of tags: 46

$ cat ~/myfiles/stats/relations

# of relations: 39

Finally, the connections �le contains a the total number of active database connections:

$ cat ~/myfiles/stats/connections

# of MySQL open connections: 1

You're now familiar enough with Tagsistant to know that a recursive scan of the store/ directory can't be done. This is not what indexing tools

expect. updatedb (the companion of locate) and other tools like Baloo will try to descend the store/ tree, entering an endless loop. You should

exclude every Tagsistant mountpoint from the set of scanned directories. For example, to exclude the Tagsistant managed /home/tx0/my�les

directory from updatedb, modify /etc/updatedb.conf and add the mountpoint to the PRUNEPATHSvariable like in:

PRUNEPATHS="/tmp /var/spool /media /home/.ecryptfs /home/tx0/myfiles"

To avoid scanning Tagsistant directories for each user, ask your users to mount Tagsistant �lesystems in subdirectories of a directory called

my�les inside their homes and then add:

PRUNENAMES="myfiles"

Change the name of the mountpoint according to your tastes.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

19 of 21 11/23/2014 12:52 PM



To unmount Tagsistant you can use the same command used for any other FUSE-based �lesystem:

$ fusermount -u ~/myfiles

This command will kill the Tagsistant process and clear the mtab entry for you (if you don't understand, don't be scared, it's just stu� for the

geeks).

While compiling Tagsistant you can choose to enable some experimental features by editing tagsistant.h in the src/ directory. The �ags are

those reported by the stats/con�guration �le in the compile �ags section.

The only four �ags you are supposed to tweak are:

TAGSISTANT_ENABLE_QUERYTREE_CACHE1. 

TAGSISTANT_ENABLE_TAG_ID_CACHE2. 

TAGSISTANT_ENABLE_AND_SET_CACHE3. 

TAGSISTANT_ENABLE_REASONER_CACHE4. 

Their purpose is to enable some caching layers to dramatically reduce the volume of SQL queries done. While the second and the third are

stable and don't  cause too much memory consumption,  so being safely enabled on production,  the �rst (the querytree cache) can cause

Tagsistant to exhaust memory during huge data loading, so if you experience that problem, try disabling query tree cache.

The suggested con�guration is:

  TAGSISTANT_ENABLE_QUERYTREE_CACHE: 1

     TAGSISTANT_ENABLE_TAG_ID_CACHE: 1

    TAGSISTANT_ENABLE_AND_SET_CACHE: 0

   TAGSISTANT_ENABLE_REASONER_CACHE: 0

Change it at your own risk.

In May 2013 I've done some tests on a particular situations: a chain of tag relations where t1 is included by t2 which is included by t3 ... which is

included by tN, with N being 40. The objects managed were 8352! The test showed a very quick response time of 10.739s when Tagsistant was

asked to:

ls ~/myfiles/store/t1/t2/t3/t4/t5/t6/t7/t8/t9/t10/t11/t12/t13/t14/t15/t16/

t17/t18/t19/t20/t21/t22/t23/t24/t25/t26/t27/t28/t29/t30/t31/t32/t33/

t34/t35/t36/t37/t38/t39/@

After the �rst run, issuing the same query again got answered in just 3.598s. This query if of course very suboptimal since gives the same results

of ~/my�les/store/t39/@, but my goal was to test how Tagsistant could behave under a lot of tags in the same query. The total �les returned by

the query were 937, which generated as much getattr (stat) calls to get result data (size, owner, permissions).

I've also successfully tested Tagsistant on repositories containing 100G of data.

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

20 of 21 11/23/2014 12:52 PM



I hope this quick introduction to Tagsistant 0.8 will be enough to let you experiment with the software and that you'll �nd Tagsistant useful.

If you have any comment, you're welcome on the Forum.

    This site is © 2007-2014 Tx0, released under Creative Commons Attribution-Share Alike 2.5 Italy License

0.8 howto - Tagsistant https://www.tagsistant.net/documents-about-tagsistant/0-8...

21 of 21 11/23/2014 12:52 PM


